<< Click to Display Table of Contents >> Navigation: Simplygon 7.1 examples > MultiMaterialCastingExample.cpp |
///////////////////////////////////////////////////////////////////////////
//
// System: Simplygon
// File: MultiMaterialCastingExample.cpp
// Language: C++
//
// Copyright (c) 2015 Donya Labs AB. All rights reserved.
//
// This is private property, and it is illegal to copy or distribute in
// any form, without written authorization by the copyright owner(s).
//
///////////////////////////////////////////////////////////////////////////
//
// #Description#
//
// A scene is loaded from a WaveFront file. The scene contains 3 materials.
//
// Two of the materials are grouped together to become a single new material,
// and the third original material is baked into its own new material.
// So the three input materials are cast to two output materials/textures.
//
// The textures and optimized objects are saved to file.
//
///////////////////////////////////////////////////////////////////////////
#include "../Common/Example.h"
#include "BMPheader.h"
void RunExampleCasting(const std::string& readFrom, const std::string& writeTo);
int main( int argc , char* argv[] )
{
InitExample();
// Set global variable. Using Orthonormal method for calculating tangentspace.
sg->SetGlobalSetting( "DefaultTBNType" , SG_TANGENTSPACEMETHOD_ORTHONORMAL );
std::string assetPath = GetAssetPath();
// Run the example code
RunExampleCasting( assetPath + "MaterialTestMesh/materialTestMesh.obj", "ObjectTextured" );
DeinitExample();
return 0;
}
void RunExampleCasting(const std::string& readFrom, const std::string& writeTo)
{
// Import a scene from a file and optimize it. Generate image mapping from
// the original geometries and use it to cast diffuse, specular, normal and a
// custom map to the reduced geometry.
std::string exePath = GetExecutablePath();
std::string outputGeometryFilename = exePath + writeTo + ".obj";
std::string outputDiffuse1Filename = exePath + writeTo + "_diffuse1.png";
std::string outputDiffuse2Filename = exePath + writeTo + "_diffuse2.png";
//Load object from file
spWavefrontImporter objReader = sg->CreateWavefrontImporter();
objReader->SetImportFilePath( readFrom.c_str() );
if( !objReader->RunImport() )
return;
// Get the scene
spScene scene = objReader->GetScene();
spMaterialTable originalMaterials = scene->GetMaterialTable();
//Reducer
spReductionProcessor red = sg->CreateReductionProcessor();
red->SetScene(scene);
// Set the Repair Settings.
spRepairSettings repairSettings = red->GetRepairSettings();
// Will take care of holes that are of size 0.2 or less, so small gaps etc are removed.
repairSettings->SetWeldDist( 0.2f );
repairSettings->SetTjuncDist( 0.2f );
// Set the Reduction Settings.
spReductionSettings reductionSettings = red->GetReductionSettings();
reductionSettings->SetTriangleRatio(1.0f);
// Set the Normal Calculation Settings.
spNormalCalculationSettings normalSettings = red->GetNormalCalculationSettings();
normalSettings->SetReplaceNormals( true );
normalSettings->SetHardEdgeAngleInRadians( 3.14159f * 90.f / 180.0f );
// Set the Image Mapping Settings.
spMappingImageSettings mappingSettings = red->GetMappingImageSettings();
mappingSettings->SetGenerateMappingImage( true );
mappingSettings->SetGenerateTexCoords( true ); // Set to generate new texture coordinates.
mappingSettings->SetParameterizerMaxStretch( 0.5f ); // The higher the number, the fewer texture-borders.
// We set the number of input materials and the number of output materials.
mappingSettings->SetInputMaterialCount(originalMaterials->GetMaterialsCount());
// We want to bake into two materials
mappingSettings->SetOutputMaterialCount(2);
// We set which output material each of the original materials should be baked to
mappingSettings->SetInputOutputMaterialMapping(0, 0); //The first and second original materials are baked to the same output material
mappingSettings->SetInputOutputMaterialMapping(1, 0);
mappingSettings->SetInputOutputMaterialMapping(2, 1); //The third material is baked alone to the second output material
// Set the properties for the first mapping image
mappingSettings->SetGutterSpace(0, 4 );
mappingSettings->SetWidth(0, 512 );
mappingSettings->SetHeight(0, 512 );
mappingSettings->SetMultisamplingLevel(0, 2 );
// Set the properties for the second mapping image
mappingSettings->SetGutterSpace(1, 4 );
mappingSettings->SetWidth( 1, 1024 );
mappingSettings->SetHeight( 1, 1024 );
mappingSettings->SetMultisamplingLevel( 1, 2 );
red->RunProcessing();
// Mapping image is needed later on for texture casting.
spMappingImage mappingImage0 = red->GetMappingImage(0);
spMappingImage mappingImage1 = red->GetMappingImage(1);
// Create new material table.
spMaterialTable outputMaterials = sg->CreateMaterialTable();
// Create new material for the table.
spMaterial outputMaterial0 = sg->CreateMaterial();
outputMaterial0->SetName( "output_material1" );
//Add the new material to the table
outputMaterials->AddMaterial( outputMaterial0 );
// Create new material for the table.
spMaterial outputMaterial1 = sg->CreateMaterial();
outputMaterial1->SetName( "output_material2" );
//Add the new material to the table
outputMaterials->AddMaterial( outputMaterial1 );
// Cast the first material
if(true)
{
// Cast the data using a color caster
spColorCaster cast = sg->CreateColorCaster();
cast->SetColorType( SG_MATERIAL_CHANNEL_DIFFUSE ); //Select the diffuse channel from the original material
cast->SetSourceMaterials( originalMaterials );
cast->SetMappingImage( mappingImage0 ); // The mapping image we got from the reduction process.
cast->SetOutputChannels( 3 ); // RGB, 3 channels! (1 would be for grey scale, and 4 would be for RGBA.)
cast->SetOutputChannelBitDepth( 8 ); // 8 bits per channel. So in this case we will have 24bit colors RGB.
cast->SetDilation( 10 ); // To avoid mip-map artifacts, the empty pixels on the map needs to be filled to a degree as well.
cast->SetOutputFilePath( outputDiffuse1Filename.c_str() ); // Where the texture map will be saved to file.
cast->CastMaterials(); // Fetch!
// set the material properties
// Set the diffuse multiplier for the texture. 1 means it will not differ from original texture
outputMaterial0->SetColor(SG_MATERIAL_CHANNEL_DIFFUSE, 1.0,1.0,1.0,1.0);
// Set material to point to created texture filename.
outputMaterial0->SetTexture( SG_MATERIAL_CHANNEL_DIFFUSE , outputDiffuse1Filename.c_str() );
}
// Cast the second material
if(true)
{
// Cast the data using a color caster
spColorCaster cast = sg->CreateColorCaster();
cast->SetColorType( SG_MATERIAL_CHANNEL_DIFFUSE ); //Select the diffuse channel from the original material
cast->SetSourceMaterials( originalMaterials );
cast->SetMappingImage( mappingImage1 ); // The mapping image we got from the reduction process.
cast->SetOutputChannels( 3 ); // RGB, 3 channels! (1 would be for grey scale, and 4 would be for RGBA.)
cast->SetOutputChannelBitDepth( 8 ); // 8 bits per channel. So in this case we will have 24bit colors RGB.
cast->SetDilation( 10 ); // To avoid mip-map artifacts, the empty pixels on the map needs to be filled to a degree as well.
cast->SetOutputFilePath( outputDiffuse2Filename.c_str() ); // Where the texture map will be saved to file.
cast->CastMaterials(); // Fetch!
// set the material properties
// Set the diffuse multiplier for the texture. 1 means it will not differ from original texture
outputMaterial1->SetColor(SG_MATERIAL_CHANNEL_DIFFUSE, 1.0,1.0,1.0,1.0);
// Set material to point to created texture filename.
outputMaterial1->SetTexture( SG_MATERIAL_CHANNEL_DIFFUSE , outputDiffuse2Filename.c_str() );
}
scene->GetMaterialTable()->Copy(outputMaterials);
spWavefrontExporter objExporter = sg->CreateWavefrontExporter();
objExporter->SetExportFilePath( outputGeometryFilename.c_str() );
objExporter->SetScene(scene);
objExporter->RunExport();
}